Для чего нужны экономические модели. Что такое модель и зачем она нужна Зачем нужны модели и моделирование

08.05.2024

Как указывалось выше, существует множество причин, в силу которых политологи прибегают к использованию математических моделей. Однако у данного метода есть и недостатки и преимущества. Моделирование – это процесс упрощения и дедуктивного вывода. Упрощение влечет за собой потерю информации о событии. Дедуктивный вывод зачастую включает в себя сложную математическую обработку, которая, по крайней мере на первых порах, затрудняет работу с моделью. Поэтому в отношении моделирования возникает резонный вопрос: а для чего нужны все эти сложности?

Первая причина, побуждающая нас к моделированию политического поведения, состоит в том, что модель помогает формализовать происходящие в обществе события. Дело в том, что политическая жизнь достаточно регулярна, для того чтобы упрощенная неформальная модель ее могла принести определенную пользу. Большая часть того, что случается в области политики, как правило, не является совсем уж неожиданным – на самом деле наличие элемента неожиданности указывает на то, что у нас имеются априорные представления о том, как могут развиваться события, и мы в состоянии осознать факт неожиданного поворота дел. Значит, у нас в мозгу имеются своего рода ментальные модели функционирования политических систем, даже если мы ни разу не пытались выразитьих эксплицитно. Математические модели как раз и помогают эксплицировать подобные неформальные модели.

В качестве примера ментальной модели можно привести следующий. Предположим, что на предстоящих президентских выборах один из кандидатов набирает 95% всех голосов. Очевидно, что это никак не противоречит ни конституции, ни устоявшимся избирательным процедурам. Однако мы будем склонны рассматривать такой факт как крайне маловероятный в силу целого ряда причин. Во-первых, мы допускаем, что со стороны каждой партии наберется достаточное число избирателей, чтобы свести к минимуму возможность чисто случайного результата голосования. Во-вторых, мы исходим из того, что ни одна партия не станет выставлять столь непопулярного кандидата, чтобы он мог собрать лишь 5% голосов. В-третьих, мы полагаем, что подсчет голосов производится без подтасовок. Можно было бы перечислять и далее, но суть в том, что относительно политической системы США у нас имеется целый ряд исходных допущений, в свете которых разбиение голосов на 5 и 95% представляется нам малоправдоподобным.

Все подобные допущения упрощают действительность. Мы не знаем, каково точное число избирателей, да нам это и не надо – мы просто знаем, что оно очень велико. Мы не знаем, какие конкретно особенности кандидата делают его приемлемым для одних избирателей и неприемлемым для других, но мы исходим из того, что совсем уж непопулярные кандидаты не будут выдвинуты на голосование. Мало у кого есть личный опыт в деле подсчета голосов, достаточный для того, чтобы знать, честно ли проводятся выборы, но весь опыт прошлого дает основания считать, что фальсификации на выборах места не имеют 2 . Поскольку эти допущения не столь уж часто приводят нас к неверным выводам, мы можем использовать эту модель политической системы для неформального прогнозирования будущего. В действительности те случаи, когда какой-либо кандидат получает 95% голосов, вызывают у населения сильное недоверие, иногда вплоть до требований о расследовании, так что наша модель отчасти определяет также поступки и отношения людей.

Другой причиной применения математического моделирования является необходимость эксплицитно описать механизмы, объясняющие наши неформальные прогнозы. Несмотря на то, что все индивиды знают, чего можно, а чего нельзя ожидать от данной политической системы, они зачастую не в состоянии определить точно, почему ичто конкретно они от нее ожидают. Формальная модель как раз и помогает преодолеть чересчур свободные формулировки допущений неформальной модели и дать точный, а подчас и поддающийся проверке прогноз.

Вышеприведенный пример выводится из модели Даунса, которую мы будем рассматривать ниже в данной главе. Формальная модель Даунса предсказывает, что любая политическая партия в условиях альтернативных выборов будет выбирать своих кандидатов и платформу так, чтобы привлечь с их помощью как можно большее число избирателей. Это и некоторые дополнительные соображения приводят нас к заключению, что существует тенденция, в соответствии с которой политические партии должны получить на выборах примерно равное число голосов; именно такой исход обыкновенно и наблюдается на выборах в США. Таким образом, данная формальная модель предсказала не только то, что исход с распределением голосов в соотношении 95:5 является маловероятным, но и то, что ожидаемым будет распределение в соотношении 50:50, в пользу чего было приведено определенное обоснование.

Порой, кажется, что математические модели всего лишь подтверждают и так очевидные вещи. На самом деле это неотъемлемая особенность любых моделей постольку, поскольку от них ожидается, что они в той или иной степени должны воспроизводить все происходящее в каждодневной политической реальности. Однако люди, как правило, очень смутно представляют себе, что такое “очевидное”. Рассмотрение ряда противоречащих друг другу афоризмов (“волк волка чует издалека” и “крайности сходятся”, “с глаз долой – из сердца вон” и “чем дальше с глаз, тем ближе к сердцу” и т.п.) убеждает нас в том, что здравый смысл часто оказывается правильным именно потому, что он настолько расплывчат, что попросту не может быть неверным.

Строгость формальных моделей, напротив, означает как раз то, что они могут быть неверными, и в результате у модели “спортивные показатели” могут быть подчас хуже, чем у более неоднозначного здравого смысла. Однако это вовсе не слабость, а, наоборот, достоинство моделирования, ибо допущения и прогнозы модели оказываются достаточно точными, чтобы их можно было проверить, а также указать, в каком месте и как произошла возможная ошибка. Та модель, которая устояла против целого ряда попыток ее искажения, вполне вероятно, и в будущем будет давать правильные прогнозы. Модель же, которая раз за разом дает неверные предсказания, видимо, должна быть устранена из рассмотрения.

Короче говоря, модель бывает полезной только в том случае, если в принципе, возможно, продемонстрировать ее ошибочность. Если невозможно показать, что модель неверна, то невозможно также доказать, что она верна, а отсюда следует вывод о бесполезности такой модели. Неформальная интуитивная модель, позволяющая уходить от всевозможных ошибок, может быть большим тактическим подспорьем на переговорах, но она бессильна помочь нам яснее понять механизм политического поведения.

Третьим преимуществом формальных моделей, но сравнению с голой интуицией или даже с тщательно обоснованной аргументацией на естественном языке является их способность систематически оперировать с сущностями более высокого уровня сложности. Естественные языки (подобно английскому) возникли как средства общения, а не как средства логического вывода. Математика, напротив, изначально была задумана как средство логического вывода и систематического оперирования понятиями. И опыт показал, что математика в этом отношении – очень полезное орудие. Политологи со своей стороны только сейчас начинают осознавать, что может дать моделирование для более углубленного понимания политического поведения, а в ряде случаев должны были развиться целые отрасли математики (самый заметный пример – теория игр), прежде чем обществоведы смогли увидеть нечто общее в разрозненных типах социального поведения. Математическое моделирование социального поведения насчитывает не более 20 лет от роду, и пока нет оснований считать, что оно уже достигло пределов своего развития.

И наконец, преимуществом математического моделирования является также то, что оно позволяет различным научным дисциплинам обмениваться своими исследовательскими средствами и приемами. Тому можно привести много примеров: в моделях, используемых в политологии, задействованы не только основные математические средства, но и масса методик, заимствованных из эконометрики, социологии и биологии. Опросное исследование – представляющее собой, по сути дела, сложную математическую модель распределения общественного мнения между различными группами населения – является широко распространенным методом, используемым в большинстве социальных наук. Заимствование происходит и в обратном направлении: специалисты по системотехнике, разрабатывая крупные компьютерные модели глобальных социально-демографических процессов, для уточнения политических аспектов были вынуждены обратиться к политологическим моделям, а совсем недавно математики, работающие над новой теорией хаотического поведения, обнаружили, что модель Ричардсона гонки вооружений (см. пример 1) поддается весьма продуктивному анализу с применением методов вышеупомянутой теории. Подобным же образом и теория игр была изначально разработана экономистами и политологами для анализа явления конкуренции и лишь впоследствии превратилась в раздел чистой математики.

Помимо стимулирования междисциплинарного обмена методами и идеями, математические модели полезны также тем, что позволяют увидеть глубинную однородность явлений, которые на первый взгляд не имеют между собой ничего общего. Следующий пример, сам по себе довольно тривиальный, наглядно демонстрирует такой тип обобщения.

Представим себе нехитрую игру, в которой два игрока по очереди берут со стола фишки, пронумерованные от 1 до 9:

1 2 3 4 5 6 7 8 9

Выигрывает тот, кто первым наберет фишек на сумму, равную 15. Играя в эту игру, вы, несомненно, обнаружите, что в ней есть свои приемы – в частности, в порядке защитного приема вы можете забирать со стола именно те фишки, которые нужны второму игроку для получения окончательной суммы, – однако общая стратегия игры, по-видимому, не совсем очевидна. Чтобы обобщить игру, перепишем номера фишек следующим образом:

Заметим, что в такой записи каждая строка, столбец и диагональ в сумме дает желаемый исход – 15. Таким образом, для успешной игры нужно выбрать какой-то один из этих рядов чисел. В такой форме игра выглядит уже очень знакомо: это “крестики-нолики”, в которые умеет играть любой пятилетний ребенок. После того как мы представили игру в упорядоченном виде, то, что сначала нам казалось незнакомым, теперь стало выглядеть вполне узнаваемо, так что мы получили возможность использовать в новом контексте издавна известное нам решение.

Это упражнение – конечно, в более сложных формах и применительно к более значимым задачам – весьма характерно для процесса нахождения общих черт с использованием математических моделей. Известно множество случаев, когда математическая модель, разработанная изначально в расчете на одну какую-то проблему, оказывалась равным образом применимой и к другим проблемам. К примеру, модель Ричардсона гонки вооружений может быть использована для изучения не только международной гонки вооружений, но и динамики роста предвыборных расходов соперничающих политических партий или процесса взвинчивания участниками аукциона цены на “лакомый” товар. Игра “дилемма заключенного” применима не только к примеру позиционной войны (см. ниже), но и к случаю “войны цен” между двумя бензозаправочными станциями, а также к случаю принятия государством решения о необходимости разработки нового вида оружия. Разновидность игры “дилемма заключенного” под названием “цыпленок” берет свое начало от игр юных головорезов, носившихся в разбитых колымагах по заброшенным дорогам Калифорнийской пустыни; она теперь применяется к изучению политики ядерного сдерживания в условиях угрозы термоядерной войны. Перечислять примеры можно было бы до бесконечности; для нас, однако, существенно, что большинство хороших математических моделей находят применения, далеко выходящие за рамки тех проблем, ради которых они первоначально разрабатывались.

Итак, математические модели имеют четыре потенциальных преимущества по сравнению с естественно-языковыми моделями. Во-первых, они упорядочивают те ментальные модели, которыми мы обычно пользуемся. Во-вторых, они лишены неточности и неоднозначности. В-третьих, математическая запись в отличие от естественно-языковых выражений позволяет оперировать на очень высоком уровне дедуктивной сложности. И, наконец, математические модели способствуют нахождению общих решений для проблем, кажущихся на первый взгляд разнородными.

А для чего нужны географические карты, планы городов, схемы метро? Чтобы ориентироваться . Чтобы доехать туда, куда нужно тебе, а не куда ноги приведут. Это конечно же возможность выбора. Приехав в незнакомое место, можно, купив местную карту или схемку, сразу увидетьмножество возможностей и выбрать лучший вариант. Посетить самое интересное. Побывать там, где больше всего хочется.

Еще это прекрасная возможность передать другомуинформацию об окружающем мире. Пусть не всю, но самую необходимую. Ту, что нужна здесь и сейчас. Может быть поэтому создается такое большое количество разнообразных карт и атласов. Эта информация может быть самая разная - начиная от указаний на ресурсы, кончая предупреждениями об опасности. А это, согласитесь, тоже очень важный момент.

Карты позволяют взглянуть на всю систему в целом - выйти за рамки своего обычного восприятия. Не так-то много землян удостоились чести видеть свою планету со стороны, а глобус видели многие. Какое никакое представление о нашем мире мы теперь имеем. Мы уже можем мыслить глобально.

Так и в наших представлениях о реальности. Это хороший способ разобраться в окружающей нас богатой и многообразной жизни. Во всех ее тонкостях и хитросплетениях. Зная, как устроена ссора, как делается конфликт, из чего состоит интрига, можно легкоподняться над ситуацией и решить ее максимально эффективно. Представляя себе механику успеха, источники счастья, ключи к интересу, можно легко получить и это.

Воспитывая нас, наши родители делятся своим жизненным опытом - своими картами. Они учат детей всему, что может быть интересно и полезно в жизни. Что может пригодиться. Онипредостерегают свое чадо от всех опасностей, которые могут ему встретиться.

Ребенок учится ориентироваться в этой странной штуке под названием "жизнь". Сначала взрослые буквально ведут его за руку. Потом, по мере взросления, он делает все более и более самостоятельные шаги. Он учится опираться на свою карту. Он учится ею пользоваться.

Начиная с некоторого момента, прилежный ученик уже умеет путешествовать по карте там, где он никогда не был в жизни. Числа, буквы, сложение, вычитание, логика, поэзия, Африка, мораль, электрон, квантово-волновой дуализм… Их ни пощупать, ни понюхать, ни попробовать, ни рассмотреть, ни послушать. Но человек уже может этим пользоваться, оперировать и получать реальную пользу.

Но и это еще не все.

Для чего вообще нужны модели реально действующих объектов? Математические модели? Чтобы по поведению модели спрогнозировать поведение самого объекта. Нет необходимости строить множество дорогостоящих самолетов в тайной надежде, что хоть один из них да полетит. Для этого существуют упрощенные, но эффективные математические модели поведения самолета в воздухе.

Где-то в начале двадцатого века была создана уменьшенная копия броненосца. Командование флота очень повеселил тот факт, что кораблик переворачивался даже от небольшой волны.

Броненосец решено было построить. Он утонул в первый же шторм.

Незачем сразу строить огромный (или микроскопический) механизм, не представляя себе, будет ли он работать. Вдруг какая шестеренка застрянет! Для модели можно использовать материалы попроще и подешевле. Она уже не будет точной копией прототипа, но самые важные его свойства она отразит. 28

Еще с помощью моделей можно объяснять школьникам, как работает сложный прибор. Не будешь же тащить в школу атомный реактор! Или так - реальный объект хрупкий, ломкий и скоропортящийся, а модель можно сделать из пластмассы. Или стали.

В принципе, основной задачей всех ученых во все времена можно считать создание наиболее действенных моделей окружающей реальности . Оговорюсь: некоторые пытались и пытаются понять истинную суть вещей - Бог им в помощь. Все философы, психологи, социологи, физики, химики, математики, филологи, биологи… создают своимодели мира .

Они пытаются понять окружающую действительность. Научитьсяпрогнозировать события,контролировать ситуацию. Управлять. Они выискивают закономерности, формулируют правила (тут же находя и записывая исключения), изобретают законы природы. Все это служит двум вещам: пониманию и управлению.

И индивидуальные карты только тем и отличаются, что довольно большая их часть формируются на основе личного опыта. А еще - многие люди искренне верят, что их видение реальности и есть сама реальность. В отличие от ученых. Уж они то знают, что они работают с моделями, а не с миром. Знают - в пределах своей профессии. Редко больше.

Как видите, карты - это очень удобный инструмент , особенно если грамотно с ним работать. Они помогают нам ориентироваться, путешествовать в неизведанное, передавать информацию, учиться, понимать и познавать окружающий мир, контролировать ситуацию. А также знать, как относиться к внешним событиям и как на них реагировать.

Как указывалось выше, существует множество причин, в силу которых политологи прибегают к использованию математических моделей. Однако у данного метода есть и недостатки и преимущества. Моделирование – это процесс упрощения и дедуктивного вывода. Упрощение влечет за собой потерю информации о событии. Дедуктивный вывод зачастую включает в себя сложную математическую обработку, которая, по крайней мере на первых порах, затрудняет работу с моделью. Поэтому в отношении моделирования возникает резонный вопрос: а для чего нужны все эти сложности?

Первая причина, побуждающая нас к моделированию политического поведения, состоит в том, что модель помогает формализовать происходящие в обществе события. Дело в том, что политическая жизнь достаточно регулярна, для того чтобы упрощенная неформальная модель ее могла принести определенную пользу. Большая часть того, что случается в области политики, как правило, не является совсем уж неожиданным – на самом деле наличие элемента неожиданности указывает на то, что у нас имеются априорные представления о том, как могут развиваться события, и мы в состоянии осознать факт неожиданного поворота дел. Значит, у нас в мозгу имеются своего рода ментальные модели функционирования политических систем, даже если мы ни разу не пытались выразитьих эксплицитно. Математические модели как раз и помогают эксплицировать подобные неформальные модели.

В качестве примера ментальной модели можно привести следующий. Предположим, что на предстоящих президентских выборах один из кандидатов набирает 95% всех голосов. Очевидно, что это никак не противоречит ни конституции, ни устоявшимся избирательным процедурам. Однако мы будем склонны рассматривать такой факт как крайне маловероятный в силу целого ряда причин. Во-первых, мы допускаем, что со стороны каждой партии наберется достаточное число избирателей, чтобы свести к минимуму возможность чисто случайного результата голосования. Во-вторых, мы исходим из того, что ни одна партия не станет выставлять столь непопулярного кандидата, чтобы он мог собрать лишь 5% голосов. В-третьих, мы полагаем, что подсчет голосов производится без подтасовок. Можно было бы перечислять и далее, но суть в том, что относительно политической системы США у нас имеется целый ряд исходных допущений, в свете которых разбиение голосов на 5 и 95% представляется нам малоправдоподобным.

Все подобные допущения упрощают действительность. Мы не знаем, каково точное число избирателей, да нам это и не надо – мы просто знаем, что оно очень велико. Мы не знаем, какие конкретно особенности кандидата делают его приемлемым для одних избирателей и неприемлемым для других, но мы исходим из того, что совсем уж непопулярные кандидаты не будут выдвинуты на голосование. Мало у кого есть личный опыт в деле подсчета голосов, достаточный для того, чтобы знать, честно ли проводятся выборы, но весь опыт прошлого дает основания считать, что фальсификации на выборах места не имеют 2 . Поскольку эти допущения не столь уж часто приводят нас к неверным выводам, мы можем использовать эту модель политической системы для неформального прогнозирования будущего. В действительности те случаи, когда какой-либо кандидат получает 95% голосов, вызывают у населения сильное недоверие, иногда вплоть до требований о расследовании, так что наша модель отчасти определяет также поступки и отношения людей.

Другой причиной применения математического моделирования является необходимость эксплицитно описать механизмы, объясняющие наши неформальные прогнозы. Несмотря на то, что все индивиды знают, чего можно, а чего нельзя ожидать от данной политической системы, они зачастую не в состоянии определить точно, почему и что конкретно они от нее ожидают. Формальная модель как раз и помогает преодолеть чересчур свободные формулировки допущений неформальной модели и дать точный, а подчас и поддающийся проверке прогноз.

Вышеприведенный пример выводится из модели Даунса, которую мы будем рассматривать ниже в данной главе. Формальная модель Даунса предсказывает, что любая политическая партия в условиях альтернативных выборов будет выбирать своих кандидатов и платформу так, чтобы привлечь с их помощью как можно большее число избирателей. Это и некоторые дополнительные соображения приводят нас к заключению, что существует тенденция, в соответствии с которой политические партии должны получить на выборах примерно равное число голосов; именно такой исход обыкновенно и наблюдается на выборах в США. Таким образом, данная формальная модель предсказала не только то, что исход с распределением голосов в соотношении 95:5 является маловероятным, но и то, что ожидаемым будет распределение в соотношении 50:50, в пользу чего было приведено определенное обоснование.

Порой, кажется, что математические модели всего лишь подтверждают и так очевидные вещи. На самом деле это неотъемлемая особенность любых моделей постольку, поскольку от них ожидается, что они в той или иной степени должны воспроизводить все происходящее в каждодневной политической реальности. Однако люди, как правило, очень смутно представляют себе, что такое “очевидное”. Рассмотрение ряда противоречащих друг другу афоризмов (“волк волка чует издалека” и “крайности сходятся”, “с глаз долой – из сердца вон” и “чем дальше с глаз, тем ближе к сердцу” и т.п.) убеждает нас в том, что здравый смысл часто оказывается правильным именно потому, что он настолько расплывчат, что попросту не может быть неверным.



Строгость формальных моделей, напротив, означает как раз то, что они могут быть неверными, и в результате у модели “спортивные показатели” могут быть подчас хуже, чем у более неоднозначного здравого смысла. Однако это вовсе не слабость, а, наоборот, достоинство моделирования, ибо допущения и прогнозы модели оказываются достаточно точными, чтобы их можно было проверить, а также указать, в каком месте и как произошла возможная ошибка. Та модель, которая устояла против целого ряда попыток ее искажения, вполне вероятно, и в будущем будет давать правильные прогнозы. Модель же, которая раз за разом дает неверные предсказания, видимо, должна быть устранена из рассмотрения.

Короче говоря, модель бывает полезной только в том случае, если в принципе, возможно, продемонстрировать ее ошибочность. Если невозможно показать, что модель неверна, то невозможно также доказать, что она верна, а отсюда следует вывод о бесполезности такой модели. Неформальная интуитивная модель, позволяющая уходить от всевозможных ошибок, может быть большим тактическим подспорьем на переговорах, но она бессильна помочь нам яснее понять механизм политического поведения.

Третьим преимуществом формальных моделей, но сравнению с голой интуицией или даже с тщательно обоснованной аргументацией на естественном языке является их способность систематически оперировать с сущностями более высокого уровня сложности. Естественные языки (подобно английскому) возникли как средства общения, а не как средства логического вывода. Математика, напротив, изначально была задумана как средство логического вывода и систематического оперирования понятиями. И опыт показал, что математика в этом отношении – очень полезное орудие. Политологи со своей стороны только сейчас начинают осознавать, что может дать моделирование для более углубленного понимания политического поведения, а в ряде случаев должны были развиться целые отрасли математики (самый заметный пример – теория игр), прежде чем обществоведы смогли увидеть нечто общее в разрозненных типах социального поведения. Математическое моделирование социального поведения насчитывает не более 20 лет от роду, и пока нет оснований считать, что оно уже достигло пределов своего развития.

И наконец, преимуществом математического моделирования является также то, что оно позволяет различным научным дисциплинам обмениваться своими исследовательскими средствами и приемами. Тому можно привести много примеров: в моделях, используемых в политологии, задействованы не только основные математические средства, но и масса методик, заимствованных из эконометрики, социологии и биологии. Опросное исследование – представляющее собой, по сути дела, сложную математическую модель распределения общественного мнения между различными группами населения – является широко распространенным методом, используемым в большинстве социальных наук. Заимствование происходит и в обратном направлении: специалисты по системотехнике, разрабатывая крупные компьютерные модели глобальных социально-демографических процессов, для уточнения политических аспектов были вынуждены обратиться к политологическим моделям, а совсем недавно математики, работающие над новой теорией хаотического поведения, обнаружили, что модель Ричардсона гонки вооружений (см. пример 1) поддается весьма продуктивному анализу с применением методов вышеупомянутой теории. Подобным же образом и теория игр была изначально разработана экономистами и политологами для анализа явления конкуренции и лишь впоследствии превратилась в раздел чистой математики.

Помимо стимулирования междисциплинарного обмена методами и идеями, математические модели полезны также тем, что позволяют увидеть глубинную однородность явлений, которые на первый взгляд не имеют между собой ничего общего. Следующий пример, сам по себе довольно тривиальный, наглядно демонстрирует такой тип обобщения.

Представим себе нехитрую игру, в которой два игрока по очереди берут со стола фишки, пронумерованные от 1 до 9:

1 2 3 4 5 6 7 8 9

Выигрывает тот, кто первым наберет фишек на сумму, равную 15. Играя в эту игру, вы, несомненно, обнаружите, что в ней есть свои приемы – в частности, в порядке защитного приема вы можете забирать со стола именно те фишки, которые нужны второму игроку для получения окончательной суммы, – однако общая стратегия игры, по-видимому, не совсем очевидна. Чтобы обобщить игру, перепишем номера фишек следующим образом:

4 3 8 9 5 1 2 7 6

Заметим, что в такой записи каждая строка, столбец и диагональ в сумме дает желаемый исход – 15. Таким образом, для успешной игры нужно выбрать какой-то один из этих рядов чисел. В такой форме игра выглядит уже очень знакомо: это “крестики-нолики”, в которые умеет играть любой пятилетний ребенок. После того как мы представили игру в упорядоченном виде, то, что сначала нам казалось незнакомым, теперь стало выглядеть вполне узнаваемо, так что мы получили возможность использовать в новом контексте издавна известное нам решение.

Это упражнение – конечно, в более сложных формах и применительно к более значимым задачам – весьма характерно для процесса нахождения общих черт с использованием математических моделей. Известно множество случаев, когда математическая модель, разработанная изначально в расчете на одну какую-то проблему, оказывалась равным образом применимой и к другим проблемам. К примеру, модель Ричардсона гонки вооружений может быть использована для изучения не только международной гонки вооружений, но и динамики роста предвыборных расходов соперничающих политических партий или процесса взвинчивания участниками аукциона цены на “лакомый” товар. Игра “дилемма заключенного” применима не только к примеру позиционной войны (см. ниже), но и к случаю “войны цен” между двумя бензозаправочными станциями, а также к случаю принятия государством решения о необходимости разработки нового вида оружия. Разновидность игры “дилемма заключенного” под названием “цыпленок” берет свое начало от игр юных головорезов, носившихся в разбитых колымагах по заброшенным дорогам Калифорнийской пустыни; она теперь применяется к изучению политики ядерного сдерживания в условиях угрозы термоядерной войны. Перечислять примеры можно было бы до бесконечности; для нас, однако, существенно, что большинство хороших математических моделей находят применения, далеко выходящие за рамки тех проблем, ради которых они первоначально разрабатывались.

Итак, математические модели имеют четыре потенциальных преимущества по сравнению с естественно-языковыми моделями. Во-первых, они упорядочивают те ментальные модели, которыми мы обычно пользуемся. Во-вторых, они лишены неточности и неоднозначности. В-третьих, математическая запись в отличие от естественно-языковых выражений позволяет оперировать на очень высоком уровне дедуктивной сложности. И, наконец, математические модели способствуют нахождению общих решений для проблем, кажущихся на первый взгляд разнородными.

Нас часто забывают спрашивать, почему мы так любим бизнес-процессы и какие задачи мы решаем с помощью процессного управления. В этой пилотной статье нашего блога рассмотрим, как с помощью одной модели одного бизнес-процесса можно решить несколько практических задач из жизни бизнеса любого размера.

Организационно-штатная структура

Давайте для примера создадим если не федеральный банк, то хотя бы отдел продаж новой компании для плановой продажи N единиц продукта в месяц. Для отдела нужны сотрудники и начальник. Сколько и каких сотрудников и начальников надо для продажи такого объема продукции? Пока не ясно, придется набросать модель. До появления BPM-сервиса «БП Симулятор» это приходилось делать на пляжном песке, на стенах и других доступных платформах.

Этого уже достаточно для ручного или автоматического формирования:

  • Положения о подразделении «Отдел продаж»
  • План найма сотрудников (9 штатных единиц)
  • Должностные инструкции сотрудников:
    • Начальник отдела
    • Персональный менеджер
    • Менеджер по продажам
    • Специалист бэк-офиса
А если создать модель организационно-штатной структуры и модель компетенций, то можно сразу сформировать и:
  • Вакансии для поиска персонала (4 роли)
  • План обучения (9 сотрудников на 4 роли)

Формирование бизнес-требований для внедрения ПО

Мы подготовили ресурсы, необходимо подумать об инструменте - программном обеспечении. Проектный менеджер из ИТ-отдела будет рад, если вместо серии противоречивых интервью вы дадите ему более подробную модель будущего бизнес-процесса. Так вот-же она, мы добавили входы/выходы и ресурсы для выполнения функций:

В требованиях можно более подробно расписать последовательность выполнения функций, например «Привлечение клиентов»:

  1. Импорт списка клиентов
  2. Приоритезация списка клиентов для обзвона
  3. Автоматический набор номера клиента
  4. Фиксация результата контакта
На основании таких требований можно производить оценку возможности внедрения программного обеспечения.

Операционные расходы

С капитальными расходами на лицензии ПО определились, а что с операционными? Надо провести стоимостной анализ доли затрат на себестоимость продукта. Дополним нашу модель стоимостью ресурсов (или свяжем созданную ранее организационную модель с данными из ПО по начислению заработной платы).

Так просто? Теперь да, а вот раньше для проведения такого анализа необходимо было привлечь операционистов, продуктологов, технологов, финансистов и кадровиков. Если в процессе создания драйвера расходов сам процесс изменялся, то приходилось весь расчет начинать сначала.

Регламент выполнения

Казалось-бы, что может быть проще для формирование регламента выполнения бизнес-процесса дать задание тетушке в пуховом платке (методолог), объяснить, помолиться и подождать несколько месяцев до появления в муках рожденного Регламента. Может, если помнить, что и модель и регламент - это разные формы одной сущности. Берем нашу модель и пальчиком или курсором сверху вниз:

Получаем:

Ежедневно при получении документа «Список клиентов для обзвона» Персональный менеджер выполняет функцию «Привлечение клиентов» согласно нормо-регулирующего документа «Инструкция по обзвону» с помощью программного средства «CRM». В результате выполнения функции должен быть заполнен документ «Результат звонка». Нормативное время выполнения функции «Привлечение клиента» составляет 00:30:00.
Если в результате выполнения функции «Привлечение клиентов» произошло событие «Клиент принял предложение»… и т.д.

Все, актуальный и полный регламент, понятный и для исполнителя и для контролера готов, несите на подпись.

Проведение экспериментов

Эксперименты в боевых условиях очень дорого обходятся. Как узнать, как будет себя вести процесс, если в пятницу сделать рабочий день короче, в среду неожиданно уйдет в декрет главный специалист и сколько физически смогут продать цветочники 8 марта? Для этого надо модель нашего процесса поместить в имитационную среду, максимально приближенную к реальной.

Кроме модели бизнес-процесса понадобится модель внешней среды, но это просто необходимо знать, как часто запускается экземпляр процесса и события, влияющие на его выполнение. Например, днем в колл-центр входящий звонок поступает в среднем каждые 5 минут.

Симулятор будет запускать задачи в модель бизнес-процесса в том количестве и так долго, сколько необходимо. А по завершению у вас останутся результаты имитационного моделирования, необходимые для принятия решения, как будто процесс реально проработал нужное время.

В отличие от статичной модели, в результатах симуляции видно, что сотрудники не работают более 8 часов, их задачи переносятся и ждут своей очереди на выполнение или доступных ресурсов, приближая расчетные данные производительности к фактическим.

Заключение

Все описанные выше примеры применения модели реальны, часто применимы и доступны. Кроме этого, при помощи модели БП просто решаются и менее тривиальные задачи: составление карты рисков, анализ контуров управления качеством и источников дефектов для бережливого производства. Имея модель всего одного процесса для формирования перечисленных результатов экономится очень много человеко-часов, в случае изменения процесса так же легко, путем внесения изменений в модель актуализируются и результаты. Нам лень тратить время на рутину, вот почему мы любим процессы и, надеемся, полюбите и вы.

Подпишитесь на наш блог здесь и вы, возможно, узнаете:

  • Как правильно идентифицировать бизнес-процессы, что бы не увеличились границы проекта
  • Что делать, если моделируемый процесс успевает измениться к моменту окончания моделирования
  • Реверс-инжиниринг процесса - это не сложно и законно, охота за моделями и многое другое.
Ну а пока мы ждем вас на нашем

Настало время немножко вернуться к циклу материалов, которые обсуждались прошлым летом. Это нужно для того, чтобы сегодняшним материалом поставить точку в том цикле (и со спокойной душой начать новый).

Итак, что было летом?

  • Мы начали цикл с
  • Затем посмотрели работу этого интеллектуального инструмента на контекстную рекламу
  • После частного случая с контекстной рекламой посмотрели, как можно применить
  • Это позволило нам начать (есть же границы применимости интеллектуальных инструментов?)
  • После перешли к (сложной становится любая система, где есть более одной обратной связи — то есть везде, где появляется человек, тут же возникает сложная система)
  • Чтобы воздействовать на хаос, (они позволят , чтобы можно было половчее на это происходящее воздействовать)
  • И сделав такой большой круг, мы вернулись вновь к применению интеллектуальных инструментов для решения частных прикладных задач (уже с точки зрения )
  • Это позволило нам уверенно рассматривать тему (с целью предсказывать будущее этих систем)

При этом, по удивительному стечению обстоятельств, мы обошли стороной вопрос: «А что же такое модель?».

В общем смысле модель — это некое описание процесса или события. В бизнесе наиболее известны бизнес-модели (описание того, как именно собственник заработает деньги своим бизнесом) и модели бизнес-процессов (например, описание как именно, когда, кому и почему Фатима на кассе Макдональдса должна предложить пирожок).

Моделей может быть большое количество. Но для решения прикладных задач в начале будет достаточно простых моделей.

Чтобы не усложнять себе жизнь при работе с моделями, полезно придерживаться следующих критериев:

  1. Модели должны быть упрощены — они должны охватывать не все аспекты действительности, а лишь самое значимое
  2. Модели должны быть прагматичны — то есть сфокусированы на том, что полезно в данный момент
  3. Модели должны обобщать — то есть представлять собой краткий обзор сложных взаимосвязей
  4. Модели должны быть наглядны — то есть они должны визуально объяснять то, что с трудом поддается объяснению на словах (это же увеличивает их полезность при общении с коллегами, руководителями и подчиненными)
  5. Модели должны упорядочивать — то есть структурировать информацию и раскладывать ее по полочкам
  6. Модели должны являться рабочим инструментом — они не должны давать готовых ответов. Нет. Их первостепенная и основная задача — ставить вопросы. И только когда ты начинаешь работать с той или иной моделью, будут появляться ответы.

Для чего нужны модели?

Когда наш мозг сталкивается с хаосом, то автоматически (!) начинает создавать системы, чтобы этот хаос распознать, структурировать или хотя бы получить по возможности полную картину происходящего. Именно поэтому люди всегда находят объяснения случившемуся (что заводит в дебри мифов вроде молний с неба, как знака гнева богов). То есть это происходит независимо от нас. Люди просто не могут не реагировать. Неокортекс работает постоянно, достраивая картину будущего и постоянно стараясь предсказать будущее. Это элемент эволюции, который постоянно заводит нас в тупики инерции мышления и инструментальной слепоты.

Модели же помогают нам облегчить эту задачу. Потому что построение моделей — сознательный процесс. Он заставляет отбросить второстепенное и сконцентрироваться на самом главном.

Критики любят подчеркивать, что модели не отражают реальной действительности. Это верно. Но неправильно утверждать, что модели способствуют стандартизации мышления. Наоборот, модель — это результат логического мышления, которое требует сознательных активных усилий. И именно поэтому построение новой или применение уже существующей модели часто помогает выйти за рамки инерции мышления. В этом важность модели.

Два подхода в использовании моделей

Существует два подхода использовать модели. Так называемые «американский метод» и «европейский метод».

Американцы обожают совершать пробы и делать ошибки. Идеал такого подхода — Эдисон. Эталон такого подхода — совершить как можно большее количество ошибок в единицу времени. Это обучение полностью на практике. Попытка, неудача, выводы, новая попытка. Это далеко не всегда продуктивно (а в ).

Европейцы же склонны сначала ознакомиться с теорией, а потом уже что-то сделать и потерпеть неудачу. После чего они анализируют сделанное, исправляют ошибки и повторяют попытку. Тут процесс несколько другой. Сначала читаем инструкцию, затем применяем на практике, если терпим неудачу — делаем выводы, внимательнее изучаем теорию и снова применяем на практике. Применение такого подхода в решении простых задач избыточно по ресурсам. Но зато позволяет изящнее решать сложные задачи.

Подходы не хороши и не плохи. Они просто есть. И важно помнить главное правило:
Каждая модель хороша лишь настолько, насколько хорош ее исполнитель.


Понравилось? Поделись!
© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал