Происхождение многоклеточных организмов. Как возникли многоклеточные Первые многоклеточные появились в эре

16.08.2024

Одноклеточные (жгутиковые, амебы, инфузории и др.) живут и в наши дни во всех водоемах. Большей частью они совсем не видны простым глазом. Лишь некоторые из них заметны в воде в виде светлых подвижных точек. Кроме многих свойств - движения, питания, раздражимости, роста, они обладают и способностью размножаться. Известны два способа размножения - половой и бесполый.

При половом способе два одноклеточных организма чаще всего сливаются в одну общую клетку (зиготу), образуя новый организм, который вскоре в свою очередь разделяется на два или множество других самостоятельных организмов.

При бесполом размножении одноклеточный организм, например, тот же жгутиконосец эвглена, делится на две части без участия второго себе подобного «партнера». Такое размножение повторяется много раз подряд. Жгутиконосцев становится так много, что вода в пруду, в луже «зацветает», становится мутно-зеленоватой от их массы. При половом же размножении, повторяем, две клетки, то есть два жгутиконосца, сливаются навсегда, протоплазма с протоплазмой, ядро с ядром в одну общую клетку, которая лишь позже делится.

Присмотримся к жизни и размножению некоторых из них. Среди одноклеточных жгутиковых есть виды, у которых деление организма на две клетки как бы замедляется. Только что разделившись, они должны бы разойтись в разные стороны и жить до следующего деления самостоятельно. Но у данных видов (из семейства вольвоксовых) этого не происходит. Клетки не расходятся и успевают разделиться еще раз, а то и два, три раза, прежде чем разойтись. Таким образом, можно увидеть 4, а то и 8, 16 клеток, не расходящихся и плавающих комочком вместе. Такая совместная жизнь называется колониальной, а сама группа одноклеточных - колонией. Таким образом, кроме одиночных одноклеточных (их большинство) существуют простые временные колонии из 4-8 и более сложные 16-32 клеток, которые, не расходясь, подолгу живут вместе. Все клетки в таких колониях одинаковы.

Но существуют и другие формы, состоящие из 3600 клеток. Одна из таких колоний называется Вольвокс. Это сообщество «клеток, будучи размером почти с маковое зерно или булавочную головку, видно без микроскопа. Интересно, что в такой колонии не все клетки равноценны и одинаковы. Большинство из них потеряло способность размножаться половым путем. Они двигают колонию, загребая воду нитевидными жгутиками (ресничками), питают друг друга, но размножаться могут только делением. Эти клетки лежат на поверхности колонии.

Другие клетки, способные размножаться половым путем, располагаются в глубине шарика, получая питательные вещества от оставшихся на поверхности. Таких оказывается 20-30 из трех с половиной тысяч. Но лежащие в глубине особи оказываются не все одинаковыми. Отдельные из группы еще делятся, становясь очень мелкими, сохраняя жгутики и способность к движению. Другие растут, укрупняются, теряют жгутики-реснички, становясь неподвижными. При половом размножении сливаются попарно только одна большая неподвижная клетка (женская) с одной мелкой подвижной (мужской). Таким образом, в этих сложных колониях существуют, по крайней мере, три вида клеток (поверхностные, женские, мужские) и ясно, что они друг без друга жить не могут.

Считают, что и на заре зарождения и развития жизни возникали подобные колонии. В них клетки еще больше разделялись по выполняемым функциям, как говорят, специализировались. В колонии такой могли, например, обособиться, мужские и женские клетки, то есть несущие функции размножения, затем чувствующие, двигательные, питающие и другие. Жить самостоятельно отдельно от других ни одна клетка перечисленных специальностей уже не могла. С этого времени колония приобрела новое качество. Она превратилась в многоклеточный организм. И дело не только в том, что клеток стало больше. Главное в том, что отдельные из них, потеряв самостоятельность, приобрели возможность жить, дополняя друг друга, только сообща.

Таким образом, наблюдая и исследуя строение и жизнь современных сложных колоний, мы можем судить о том, как возникали многоклеточные организмы. Их предками были тоже колонии одноклеточных, не сохранившиеся до наших дней - но вольвокс, живущий поныне, но подобные ему, еще более сложные колонии. Так колония стала единым, многоклеточным организмом, а группы его клеток разных специализаций стали тканями такого организма.

Какие же многоклеточные животные возникали из различных колоний вначале? Чтобы ответить на этот вопрос следует обратиться к организмам, стоящим на нижних ступенях жизни.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Живой мир наполнен головокружительным множеством живых существ. Большинство организмов состоят только из одной клетки и не видимы невооруженным глазом. Многие из них становятся заметными исключительно под микроскопом. Другие, такие как кролик, слон или сосна, а также человек, сделаны из многих клеток, и эти многоклеточные организмы также в огромном количестве населяют весь наш мир.

Строительные блоки жизни

Структурными и функциональными единицами всех живых организмов являются клетки. Их еще называют строительными блоками жизни. Все живые организмы состоят из клеток. Эти структурные единицы были открыты Робертом Гуком еще в 1665 году. В организме человека насчитывается около ста триллионов клеток. Размер одной составляет около десяти микрометров. Ячейка содержит клеточные органеллы, которые контролируют ее активность.

Существуют одноклеточные и многоклеточные организмы. Первые состоят из одной клетки, например бактерии, а вторые включают растения и животных. Количество ячеек зависит от вида. Размер большинства клеток растений и животных клетках составляет от одного до ста микрометров, поэтому они видны под микроскопом.

Одноклеточные организмы

Эти крошечные существа состоят из одной клетки. Амебы и инфузории являются самыми старыми формами жизни, которые существовали еще около 3,8 миллиона лет назад. Бактерии, археи, простейшие, некоторые водоросли и грибы являются основными группами одноклеточных организмов. Существует две основные категории: прокариоты и эукариоты. Они также различаются по размеру.

Самые маленькие составляют около трехсот нанометров, а некоторые могут достигать размеров до двадцати сантиметров. Такие организмы обычно имеют реснички и жгутики, которые помогают им при перемещении. Они имеют простой корпус с базовыми функциями. Размножение может быть как бесполое, так и половое. Питание осуществляется обычно в процессе фагоцитоза, где частицы еды поглощаются и хранятся в специальных вакуолях, которые присутствуют в организме.

Многоклеточные организмы

Живые существа, состоящие из более чем одной клетки, называются многоклеточными. Они состоят из единиц, которые идентифицируются и присоединяются друг к другу, образуя сложные многоклеточные организмы. Большинство из них видны невооруженным глазом. Такие организмы, как растения, некоторые животные и водоросли, появляются из одной клетки и вырастают в многоцепочечные организации. Обе категории живых существ, прокариоты и эукариоты, могут проявлять многоклеточность.

Механизмы возникновения многоклеточности

Существует три теории для обсуждения механизмов, с помощью которых может возникнуть многоклеточность:

  • Симбиотическая теория утверждает, что первая клетка многоклеточного организма возникла из-за симбиоза различных видов одноклеточных, каждый из которых выполняет различные функции.
  • Синцитиальная теория утверждает, что многоклеточный организм не смог бы развиться из одноклеточных существ с несколькими ядрами. Такие простейшие, как инфузория и слизистые грибы, имеют несколько ядер, тем самым поддерживая эту теорию.
  • Колониальная теория утверждает, что симбиоз многих организмов одного и того же вида приводит к эволюции многоклеточного организма. Она была предложена Геккелем в 1874 году. Большинство многоклеточных образований происходит вследствие того, что клетки не могут отделиться после процесса деления. Примерами, подтверждающими эту теорию, являются водоросли вольвокс и эудорина.

Преимущества многоклеточности

Какие организмы - многоклеточные или одноклеточные - имеют больше преимуществ? На этот вопрос ответить достаточно сложно. Многоклеточность организма позволяет ему превышать предельные размеры, увеличивает сложность организма, позволяя дифференцировать многочисленные клеточные линии. Размножение происходит преимущественно половым путем. Анатомия многоклеточных организмов и процессы, которые в них происходят, являются достаточно сложными из-за наличия различных типов клеток, контролирующих их жизнедеятельность. Возьмем, к примеру, деление. Этот процесс должен быть точным и слаженным, чтобы предотвратить ненормальный рост и развитие многоклеточного организма.

Примеры многоклеточных организмов

Как уже говорилось выше, многоклеточные организмы бывают двух видов: прокариоты и эукариоты. К первому относят в основном бактерий. Некоторые цианобактерии, такие как чара или спирогира, являются также многоклеточными прокариотами, иногда их называют еще колониальными. Большинство эукариотических организмов также состоят из множества единиц. Они имеют хорошо развитую структуру тела, и у них есть специальные органы для выполнения определенных функций. Большинство хорошо развитых растений и животных являются многоклеточными. Примерами могут быть практически всех виды голосеменных и покрытосеменных растений. Почти все животные являются многоклечточными эукариотами.

Особенности и признаки многоклеточных организмов

Существует масса признаков, по которым можно с легкостью определить, является ли организм многоклеточным или нет. Среди можно выделить следующие:

  • У них достаточно сложная организация тела.
  • Специализированные функции выполняют различные клетки, ткани, органы или системы органов.
  • Разделение труда в организме может быть на клеточном уровне, на уровне тканей, органов и уровне систем органов.
  • В основном это эукариоты.
  • Травмы или гибель некоторых клеток глобально не влияет на организм: пораженные клетки будут заменены.
  • Благодаря многоклеточности организм может достигать больших размеров.
  • По сравнению с одноклеточными у них большая продолжительность жизненного цикла.
  • Основной тип размножения - половой.
  • Дифференциация клеток свойственна только многоклеточным.

Как растут многоклеточные организмы?

Все существа, от маленьких растений и насекомых до больших слонов, жирафов и даже людей, начинают свой путь как единичные простые клетки, называемые оплодотворенными яйцами. Чтобы вырасти в большой взрослый организм, они проходят через несколько определенных этапов развития. После оплодотворения яйца начинается процесс многоклеточного развития. На протяжении всего пути происходит рост и многократное деление отдельных ячеек. Эта репликация в конечном итоге создает конечный продукт, который является сложным, полностью сформированным живым существом.

Разделение клеток создает ряд сложных моделей, определяющихся геномами, которые являются практически идентичными во всех клетках. Это разнообразие приводит к экспрессии генов, которая контролирует четыре стадии развития клеток и эмбрионов: пролиферацию, специализацию, взаимодействие и движение. Первая включает в себя репликацию многих клеток из одного источника, вторая имеет отношение к созданию клеток с выделенными, определенными характеристиками, третья включает в себя распространение информации между ячейками, а четвертая отвечает за размещение клеток по всему телу для образования органов, тканей, костей и других физических характеристик развитых организмов.

Несколько слов о классификации

Среди многоклеточных существ выделяют две большие группы:

  • беспозвоночные (губки, кольчатые черви, членистоногие, моллюски и другие);
  • хордовые (все животные, у которых есть осевой скелет).

Важным этапом за всю историю планеты стало появление многоклеточности в процессе эволюционного развития. Это послужило мощным толчком для увеличения биологического разнообразия и его дальнейшего развития. Главным признаком многоклеточного организма является четкое распределение клеточных функций, обязанностей, а также установка и налаживание устойчивых и прочных контактов между ними. Другими словами, это многочисленная колония клеток, которая в силах сохранять фиксированное положение на протяжении всего жизненного цикла живого существа.

Возникновение многоклеточности - это закономерный процесс в эволюции живых форм, так как при этом организм приобретает ряд преимуществ в борьбе за существование. На заре существования эукариот многоклеточность возникала не единожды. Сегодняшние многоклеточные формы жизни на Земле имеют несколько разных одноклеточных предков. Например, считается, что губки имеют другого одноклеточного предка, в отличие от остальных организмов.

Предками многоклеточных были колониальные формы простейших. В колониях клетки обычно не настолько дифференцированы (если их специализация вообще наблюдается) и при отделении могут существовать независимо.

Расцвет многоклеточных форм начался около 600 млн лет назад. Однако появиться они могли намного раньше, около 2 млрд лет назад. На это указывают археологические находки червеобразных организмов и многоклеточных водорослей.

Настоящая многоклеточность (с выделением тканей) характерна только для эукариот (у прокариот встречаются колонии). Возможно это связано со сложностью генома эукариотических клеток, который обеспечивает гибкость («настраиваемость») клеток, и отсюда способность их изменять свой метаболизм и строение. Важную роль могла сыграть наследственная изменчивость, митоз, мейоз.

Многоклеточность позволяет наиболее полно использовать резерв наследственной изменчивости, что ускоряет эволюционные изменения. Большую роль в этом играет половое размножение, в котором объединены половой процесс и размножение.

Биологическая эволюция предполагает совершенствование жизненно-важных функций организмов, что во многом достигается путем их дифференциации. В результате обособления различных процессов жизнедеятельности возникают специальные структуры. Это могут быть как структуры клетки, так и части многоклеточного организма. Разделение и специализация функций и структур можно рассматривать как одно из свойств живого.

У одноклеточных эукариот (инфузорий) бывают пищеварительные вакуоли, специализирующиеся на переваривании, утилизации и выделении веществ, что напоминает своеобразную пищеварительную систему. Есть сократительные вакуоли, регулирующие водный баланс (выделительная система). Реснички и жгутики одноклеточных можно рассматривать как органы движения, позволяющих искать пищу и избегать опасности.

Однако разделение структур и функций намного эффективнее в многоклеточном организме. Взаимосвязь клеток усиливает жизненную силу системы за счет повторения клеточных процессов, разделения функций, образования специальных структур (тканей, органов, систем органов).

Многоклеточные организмы обычно крупнее одноклеточных. Это позволяет им питаться более крупной пищей, с другой стороны - они сами реже поедаются.

На поддержание многоклеточности требуется больше энергии. Поэтому она могла возникнуть, лишь когда уровень кислорода в атмосфере достиг определенной величины.

Важную роль в возникновении многоклеточности сыграло появление у одноклеточных эукариот ряда свойств и особенностей. Так хищные простейшие могли выделять определенные вещества для «приклеивания» к себе жертвы. Такие соединения (коллаген и др.) впоследствии могли начать выполнять роль заполнителя межклеточного пространства, а также для скрепления клеток между собой.

Выделяемые простейшими сигнальные вещества (для привлечения жертв или отпугивания хищников) в процессе эволюции стали использоваться для взаимодействия клеток в пределах одного организма.

На Земле лишь самые простые существа состоят из одной клетки. Все сложно организованные растения, животные и грибы состоят из нескольких клеток, и у большинства многоклеточных организмов клеток действительно очень много.
Переход к дыханию кислородом вызвал необходимость того, чтобы весь кислород доходил до всех клеток. Но вначале кислорода было довольно мало, так что его было недостаточно для проникновения в глубь клеточных слоев. И лишь когда деятельность фотосинтезирующих одноклеточных привела к тому, что атмосфера Земли насытилась кислородом, появились многоклеточные организмы.
Узнать, какова была концентрация кислорода в прошлом, позволяют геологические изыскания. Некоторые минералы не могут существовать в атмосфере, богатой кислородом, и, если бы их удалось обнаружить в каком-нибудь слое земной коры, то это означало бы, что кислорода в те времена было довольно мало. Хотя жизнь возникла довольно давно, первые многоклеточные существа появились чуть более одного миллиарда лет назад. Это были растения.
Многоклеточные животные появились еще позже - 600 миллионов лет назад. Как ни странно, это были крупные существа, напоми-

Пейзаж времен палеозоя

нающие медуз. В те времена на всей планете не было ни одного хищника.
По всей видимости, первые многоклеточные существа не стали предками современных многоклеточных организмов, видимо, многоклеточные существа возникали не один раз. Первые существа с твердым скелетом появились около 540 миллионов лет назад. Об этих организмах мы знаем гораздо больше, их облик известен нам гораздо лучше, чем внешний вид самых древних организмов, ведь по скелету -
неважно, раковине, панцирю или кости - можно представить то существо, чьей частью он был.
Поскольку до момента появления скелета ясных отпечатков не оставалось, все, что происходило до этого, назвали эрой скрытой жизни, или криптозоем, а все, что произошло потом, - палеозоем. Скелет стал настоящей революцией. Это опора, а значит движение, высокий рост, защита, возможность противостоять силе тяжести на суше и завоевать новые пространства.
Нужно помнить, что суша в то время была безжизненной, и все живое существовало лишь в океане. Что же вызвало появление скелета у древних организмов? Вероятно, увеличение количества кислорода позволило вести более активную жизнь. Активность привела к быстрому накоплению твердых отходов в организме и развитию скелета.
Некоторые организмы образовывали колонии таких размеров, что меняли облик древних водоемов. Это известковые водоросли и губки.
Вероятно, первыми существами, которые начали уничтожать других, стали головоногие моллюски, к которым относятся современные осьминоги, каракатицы и кальмары.
Несмотря на то что позвоночные животные появились тоже достаточно давно, они занимали не самые почетные места в древнем раскладе сил. Бесчелюстные панцирные - пред
ки рыб, уже были похожи на рыб, которых мы едим или разводим в аквариумах. Панцирь покрывал и бесчелюстных, и первых настоящих рыб. Но рыбы обрели привычный для нас облик лишь миллионы лет спустя.

Еще по теме КАК ВОЗНИКЛИ МНОГОКЛЕТОЧНЫЕ ОРГАНИЗМЫ?:

  1. КАК ВОЗНИКЛА ИДЕЯ БИЗНЕСА И СОУЧРЕДИТЕЛИ ПОЗНАКОМИЛИСЬ ДРУГ С ДРУГОМ
  2. 6. Поздний докембрий: возникновение многоклеточности. Гипотеза кислородного контроля. Эдиакарский эксперимент.

Вероятно, 700-900 млн лет назад на Земле появились первые многоклеточные животные и растения. У растений возникновение многоклеточного уровня организации, вероятно, произошло на основе дифференциации лентообразных колоний, образовавшихся путем бокового срастания прикрепленных нитчатых форм или благодаря делению клеток последних в двух взаимно перпендикулярных направлениях (в одной плоскости). У колоний, прикрепленных одним концом к субстрату, различные участки находились в разных условиях по отношению к падающему свету, субстрату и водной среде. В связи с этим естественный отбор благоприятствовал возникновению некоторой дифференциации частей колонии. Первым шагом было возникновение полярности колонии; на одном ее конце выделялись клетки, служившие для прикрепления к субстрату (для них характерно ослабление фотосинтеза, потеря способности к делению), на другом же конце - верхушечные клетки, интенсивно делившиеся и образовавшие своего рода «точку роста» колонии. Естественный отбор благоприятствовал приобретению клетками колонии способности делиться в разных направлениях; это приводило к ветвлению, что увеличивало поверхность колонии. Деление клеток вдоль трех взаимно перпендикулярных осей или переплетение отдельных нитей вело к возникновению многослойного «объемного» тела. В процессе его дальнейшей дифференциации сформировались многоклеточные органы, выполнявшие разные функции (фиксация на субстрате, фотосинтез, размножение). Одновременно между разными клетками растения складывалась определенная взаимозависимость, что, собственно говоря, и знаменует достижение многоклеточного уровня организации.

У животных активный образ жизни требовал более совершенной и сложной дифференциации организма, чем у растений. Сложность организации многоклеточных животных (Metazoa) и разнообразие ее конкретных форм стимулировали разработку различных гипотез о происхождении Metazoa .

Первая из них берет начало в работах Э. Геккеля, который в разработке своей теории гастреи основывался на сформулированном им биогенетическом законе, согласно которому онтогенез данного вида организмов представляет собой сжатое и сокращенное повторение (рекапитуляцию) хода филогенеза его предков (подробнее см. в ч. ГУ). В соответствии с этим Э. Геккель полагал, что филогенез древнейших Metazoa в определенной степени повторяется в онтогенезе современных низших многоклеточных животных (рис. 28). Согласно Геккелю, предками Metazoa были колониальные простейшие, обладавшие сферическими колониями с однослойной стенкой, подобными бластуле - одной из ранних

Рис. 28.

а - бластула; 6 - гаструляция; в-г - гаструла (внешний вид и продольный

разрез) стадий эмбрионального развития современных многоклеточных животных. Геккель назвал эту гипотетическую предковую форму «бластеей». При направленном плавании сферическая колония - бластея - ориентировалась одним полюсом вперед, как это наблюдается и у современных колониальных простейших, например у Volvox. Согласно Геккелю, на переднем полюсе колонии возникло впячивание ее стенки внутрь, подобно тому, как это происходит при инвагинационной гаструляции в онтогенезе некоторых современных Metazoa. В результате образовался многоклеточный организм - «гастрея», стенка тела которого состоит из двух слоев, экто- и энтодермы. Энтодерма окружает внутреннюю полость - первичный кишечник, открытый наружу единственным отверстием - первичным ртом. Организация гастреи соответствует принципиальному плану строения кишечнополостных (тип Coelenterata), которых Геккель и рассматривал как наиболее примитивных многоклеточных животных.

И. И. Мечников обратил внимание на то, что у примитивных кишечнополостных гаструляция происходит не путем инвагинации (впячивания одного полюса однослойного зародыша - бластулы), что характерно для более высокоорганизованных групп, а посредством миграции некоторых клеток из однослойной стенки тела внутрь (рис. 29). Там они образуют рыхлое скопление, позднее организующееся в виде стенок гастральной полости, которая прорывается наружу ротовым отверстием. Такой способ гаструляции гораздо проще, чем инвагинация, так как не требует сложного направленного и координированного смещения целого пласта клеток, и, вероятно, примитивнее инвагинации. В связи с этим Мечников модифицировал гипотезу Геккеля следующим образом. В сфероидной колонии простейших - жгутиконосцев клетки ее однослойной стенки, захватывавшие (фагоцитировав-


Рис. 29. Гаструляция зародыша гидроидного полипа Stomateca (из И.А. Иоффа) шие) пищу, мигрировали для ее переваривания внутрь, в полость колоний (подобно миграции клеток будущей энтодермы в процессе гаструляции кишечнополостных). Эти клетки образовали рыхлое внутреннее скопление - фагоцитобласт, функцией которого стало обеспечение всего организма пищей, включая ее переваривание и распределение, тогда как поверхностный слой клеток - кинобласт - осуществлял функции защиты и движения организма. Для захвата новых пищевых частиц клеткам фагоци- тобласта, по мысли Мечникова, не было необходимости возвращаться в поверхностный слой: располагаясь непосредственно под кинобластом, клетки фагоцитобласта захватывали пищевые частицы псевдоподиями, выдвигаемыми наружу в промежутках между клетками фагоцитобласта. Эта гипотетическая стадия эволюции Metazoa была названа Мечниковым фагоцителлой (или паренхимеллой); ее строение соответствует таковому паренхимулы, личинки некоторых кишечнополостных и губок. В дальнейшем как приспособление к повышению активности питания у потомков фагоцителлы произошла эпителизация фагоцитобласта с образованием первичного кишечника и возникновением ротового отверстия в том месте, где происходила преимущественная миграция клеток внутрь. По мнению некоторых ученых, это место, вероятно, соответствовало заднему по направлению движения полюсу тела, где при плавании возникают завихрения водяного потока, и поэтому условия наиболее благоприятны для захвата пищевых частиц. Гипотеза Мечникова, как и гипотеза Геккеля, рассматривает в качестве наиболее примитивных многоклеточных животных кишечнополостных и губок.

Важные сведения для понимания ранних этапов эволюции Metazoa были получены при изучении крайне примитивного многоклеточного животного трихоплакса (Trichoplax adhaerens), обнаруженного в Красном море Ф. Шульце еще в 1883 г., но детально исследованного лишь в 1970-е гг. нашего века К. Греллом и А. В. Ивановым. Трихоплакс (рис. 30) имеет уплощенное тело, лишенное полярности. Поверхность тела, обращенная вверх, покрыта плоским, а нижняя - цилиндрическим мерцательным эпителием. Внутри, между эпителиальными слоями, соответствующими кинобласту, находится полость с жидким содержимым, в котором располагаются веретеновидные и звездчатые клетки. Эти последние можно рассматривать как фагоцитобласт. Размножается трихоплакс бесполым способом - делением и почкованием. А. В. Иванов указал, что трихоплакс представляет собой как бы живую модель фагоцителлы, и предложил выделить эту форму в особый тип животных Phagocytellozoa. По-видимому, трихоплакс подкрепляет позиции гипотезы фагоцителлы И. И. Мечникова Однако по современным представлениям непосредственными


Рис. 30.

и - изменения формы тела одной особи (по Ф. Шульце); б - разрез, перпендикулярный краям тела (по А. В. Иванову): 1 - амебоидные клетки; 2 - спинной эпителий; 3 - веретеновидные клетки; 4 - жировые включения; 5 - пищеварительные вакуоли; 6 - брюшной эпителий

потомками фагоцителлозой среди многоклеточных были не кишечнополостные, а примитивные червеобразные животные, близкие по уровню организации к плоским ресничным червям - тур- белляриям.

Первые ископаемые следы жизнедеятельности червеобразных многоклеточных животных известны из позднерифейских отложений. В вендское время (650-570 млн лет назад) существовали уже разнообразные животные, вероятно принадлежавшие к различным типам. Немногочисленные отпечатки мягкотелых вендских животных известны из разных районов всех континентов земного шара, кроме еще малоисследованной Антарктиды. Ряд интересных находок был сделан в позднепротерозойских отложениях на территории России - на Кольском полуострове, в Архангельской области, на реке Мая и на Оленекском поднятии в Якутии и т. д.


Рис. 31.

1-10 - кишечнополостные (/ - Ediacara; 2 - Beltanella; 3 - Mcdusinitcs; 4 - Mawsonites; 5-6- Cyclomedusa; 7 - Conomedusites; 8 - Rangea; 9- Arborea; 10 - Pteridinium); 11-14 - плоские и кольчатые черви (11 - Spriggina; 12-14 - Dickinsonia); 15-16 - членистоногие (15 - Parvancorina; 16 - Praecambridium); 17 - иглокожее Tribrachidium; 18 - шарообразные студенистые организмы

Наиболее известна богатая позднепротерозойская фауна, обнаруженная в Центральной Австралии в районе Эдиакары к северу от г. Аделаида. Исследовавший эту фауну М. Глесснер считает, что она включает несколько десятков видов очень разнообразных многоклеточных животных, относящихся к разным типам (рис. 31). Большинство форм принадлежат, вероятно, к кишечнополостным. Это медузоподобные организмы, вероятно «парившие» в толще воды (Ediacara flindersi, Beltanella gilesi, Medusinites asteroides и др.), и прикрепленные к морскому дну полипоидные формы, одиночные или колониальные, напоминающие современных кораллов альционарий, или морские перья (Rangea longa, Arborea arborea, Pteridinium simplex и др.). Замечательно, что все они, как и другие животные эдиакарской фауны, лишены твердого скелета.

Кроме кишечнополостных в составе эдиакарской фауны найдены остатки червеобразных животных, причисляемых к плоским и кольчатым червям (Spriggina floundcri и разные виды Dickinsonia). Некоторые виды организмов интерпретируют как возможных предков членистоногих (Praecambridium sigillum, напоминающий по характеру сегментации тела трилобитов и хелицеровых) и иглокожих (Tribrachidium heraldicum с телом дисковидной формы, на плоской поверхности которого выступают три валика, и Arkaria

adami с пятилучевой звездообразной впадиной на ротовой стороне тела и с подобием амбулакральных желобков). Наконец, имеется целый ряд ископаемых организмов неизвестной таксономической принадлежности.

Многие вендские организмы были обнаружены также в вендских отложениях разных районов России: медузоподобные эдиа- кария и медузинитес - на полуострове Рыбачьем, птеридиниум - на севере Якутии, напоминающая сприггину вендия - в районе Яренска Архангельской области и т. д. Местонахождения вендской фауны, по богатству не уступающие эдиакарскому, были найдены на реке Сюзьма на Онежском полуострове и на Зимнем берегу Белого моря. Здесь были обнаружены ископаемые остатки свыше 30 видов бесскелетных многоклеточных животных, размеры которых варьировали от 3 мм до 30 см. Среди них вероятные представители кишечнополостных, плоских и кольчатых червей, членистоногих, иглокожих, а также ряд форм, принадлежащих к каким-то неизвестным группам. Вообще родство вендских организмов с современными группами, большинство из которых достоверно известно начиная с кембрия, остается проблематичным - различия очень велики, и некоторые исследователи считают, что известные ныне вендские организмы не связаны прямым родством с более поздними кембрийскими, а представляют слепые эволюционные ветви.

М. А. Федонкин, исследовавший Беломорскую фауну вендских животных, полагает, что некоторые из этих организмов обладают признаками нескольких разных типов животных и могут представлять исходные формы, занимающие промежуточное положение. Федонкин обратил также внимание на сходство ряда вендских организмов с личиночными стадиями некоторых современных животных, хотя вендские организмы имеют значительно более крупные размеры, чем соответствующие личинки. При всем разнообразии планов строения тела у организмов вендской фауны («вендобионтов») их объединяют некоторые общие черты организации: отсутствие скелета, конечностей, вероятно, также дыхательных и пищеварительных органов. Многие вендобионты вели неподвижный прикрепленный образ жизни. Некоторые исследователи полагают, что вендские организмы питались осмотически через поверхность тела или же с помощью живших в их теле фото- или хемосинтезирующих симбионтов - одноклеточных водорослей и бактерий.

Хотя среди вендских животных преобладают мягкотелые бес- скелетные формы, вероятно, в те времена существовали уже и немногие виды, обладавшие раковиной. Такова, например, Cloudina, имевшая простую трубчатую раковину, состоявшую из органического вещества и кальцита. Клаудина была обнаружена в карбонатных породах, которые переслаиваются с отложениями, содержащими остатки эдиакарской фауны мягкотелых животных.

Все эти данные указывают на широкое распространение фаун мягкотелых животных в вендское время. Накопление материалов по вендским ископаемым организмам позволило некоторым исследователям поставить вопрос о расширении рамок фанерозоя, с включением в его состав «эдиакария» - периода, охватывающего промежуток времени от 670 до 550 млн лет назад (в приведенной на с. 149 схеме геохронологии этот период соответствует венду в составе протерозоя).

Поскольку вендская фауна столь разнообразна и включает довольно высокоорганизованных животных, очевидно, что до ее возникновения эволюция Metazoa продолжалась уже очень долго. Вероятно, многоклеточные животные появились значительно раньше - где-то в промежутке 700-900 млн лет назад .

Таким образом, в позднем протерозое (600-650 млн лет назад) уже существовали такие группы многоклеточных животных, как губки, кишечнополостные, плоские и кольчатые черви и даже, возможно, предки членистоногих. Судя по достигнутому уровню организации, можно предполагать, что к этому времени обособились также эволюционные стволы нитчатых червей (тип Nemathelminthes), предков моллюсков и предков вторичноротых животных - олигомерных червей.

Докембрийский филогенез Metazoa можно гипотетически представить следующим образом (рис. 32). От колониальных жгутиковых (по мнению ряда авторов - от гетеротрофных форм, принадлежавших к отряду Protomonadida) путем дифференциации и интеграции колонии, с миграцией внутрь колонии клеток фа- гоцитобласта на заднем полюсе тела, возникли первые многоклеточные животные, организация которых соответствовала фа- гоцителле (по И. И. Мечникову). Мало изменившимися потомками этих древнейших многоклеточных являются современные Phagocytellozoa (Trichoplax adhaerens). Примитивные многоклеточные были свободноплавающими (за счет работы мерцательного эпителия - кинобласта) животными, питавшимися различными микроорганизмами - простейшими и одноклеточными водорослями.

При дальнейшем развитии приспособлений к активному питанию происходила постепенная эпитслизация фагоцитобласта, т. е.


Рис. 32.

преобразование рыхлого скопления клеток в организованный клеточный пласт - эпителий кишечника. Эпителизация фагоцито- бласта, вероятно, началась с развития на заднем по движению полюсе тела постоянного ротового отверстия. Как отметил К. В. Беклемишев, на этой стадии филогенеза организм стал питаться как целое, а не как совокупность отдельных самостоятельно фагоцитирующих клеток. Вероятно, к этому времени сформировалась и интегрирующая организм нервная система в виде эпителиального нервного сплетения. Активное плавание требовало способности ориентироваться в пространстве и координировать работу всех органов. Для осуществления этих функций на аборальном (противоположном ротовому отверстию) полюсе тела возник нейро-рецепторный комплекс, включавший нервный ганглий, осязательные щетинки и статоцист (орган равновесия). Подобный аборальный орган имеется у современных гребневиков (тип Ctenophora), а также у свободноплавающих личинок очень многих групп животных: плоских и кольчатых червей, моллюсков, членистоногих, полухордовых, иглокожих и др. Эту гипотетическую стадию филогенеза древних Metazoa можно назвать «стомо- фагоцителлой» (подчеркивая эпителизацию лишь ротового отдела фагоцитобласта).

Возможно, на этой стадии филогенеза произошла первая крупная дивергенция филогенетического ствола древних многоклеточных, связанная с тем, что некоторые группы этих животных перешли к освоению морского дна, другие же продолжали совершенствовать приспособления к активной жизни в толще воды.

Современные низшие плоские черви - бескишечные турбел- лярии (Acoela) в целом сохранили тот уровень организации, который, вероятно, был характерен для древнейших многоклеточных, впервые перешедших к освоению подвижного образа жизни на дне водоемов. От вендских представителей этих турбеллярий могли возникнуть филогенетические стволы, ведущие к другим группам плоских червей, к нитчатым червям и к предкам кольчатых червей (протоаннелидам). От протоаннелид обособились, с одной стороны, предки моллюсков, с другой - предки членистоногих. У всех этих групп произошла дальнейшая дифференциация фагоцитобласта. У низших червей эпителизировалась лишь его центральная часть, что привело у плоских червей к формированию разветвленного кишечника с единым отверстием - «ртом», ведущим во внешнюю среду, а у нитчатых червей - к образованию сквозного кишечника с ротовым и анальным отверстиями. У высших групп (кольчатые черви, моллюски и членистоногие) эпитслизировался весь фагоцитобласт: не только его центральная часть (энтодермальный кишечник), но и периферическая (мезодерма и ее производные). Последнее привело к развитию вторичной полости тела - целома, стенки которой образованы мезодер- мальным целомическим эпителием. Более примитивные представители кольчатых червей, моллюсков и членистоногих обладают характерной личиночной стадией - трохофорой. В связи с этим указанные группы иногда объединяют под названием Trochozoa.

У тех потомков стомофагоцителлы, которые продолжали совершенствовать адаптации к жизни в толще воды, также произошла эпителизация центрального и отчасти периферического фагоцитобласта: возникла гастральная полость (первичный кишечник) и ее периферические ветви (гастроваскулярные каналы). К этому уровню организации среди современных животных ближе всего стоят гребневики, вероятно сохранившие примитивный образ жизни в толще воды. От их позднепротерозойских предков, которых можно назвать «проктенофорами», с переходом к прикрепленной жизни на морском дне возникли стрекающие кишечнополостные (тип Coelenterata, или Cnidaria).

Другие филогенетические линии, ответвившиеся от проктено- фор, также осваивали морское дно, но с развитием приспособлений к активному передвижению по субстрату, подобно тур- белляриям и их потомкам, но на другом исходном уровне организации. У этих форм в результате завершения эпителизации периферического фагоцитобласта также образовалась вторичная полость тела - целом, но возникла она совершенно другим способом, чем у Trochozoa. В онтогенезе животных, происходящих от проктенофор, вторичная полость тела обособляется от первичного кишечника, как его боковые карманообразные выпячивания (первоначально было, вероятно, три пары таких выпячиваний), которые затем отшнуровываются от стенок кишки (рис. 33). Такой способ развития целома получил название энтероцельного - в отличие от схи- зоцельного способа, характерного для Trochozoa, у которых целом возникает в результате появления полостей внутри скоплений мезодермальных клеток, без всякой связи с первичным кишечником. О. и Р. Гертви- ги и И. И. Мечников обосновали гипотезу, согласно которой энтероцельный целом возник в эволюции из гастроваскулярных каналов проктенофорных предков (энтероцельная теория происхождения целома). Энтероцельный целом характерен для типов погонофор (Pogonophora), щетинкочелюстных (Chaeto- gnatha), плеченогих (Brachiopoda), мшанок (Bryozoa) и ряда других, в том числе группы так называемых вторичноротых животных (Deuterostomia), объединяющей типы хордовых (Chordata), иглокожих (Echinodermata) и полухордовых (Hemichordata). У вторичноротых животных имеется много общего, в частности особое положение дефинитивного (присущего взрослым организмам) рта, возникающего на полюсе тела, противоположном первичному эмбриональному рту - бла- стопору. На месте же последнего развивается анальное отверстие. Вторичноротые, несомненно, имеют общее происхождение; в качестве их предков указывают гипотетическую группу олигомерных червей, тело которых было разделено на три отдела, имелся вторичный рот и энтероцельный целом. Среди современных вторичноротых к уровню организации олигомерных червей ближе всего стоят свободноживущие полухордовые, представителем которых является желудевый червь (Balanoglossus).

Рис. 33.

I - эктодерма; 2 - энтодерма; 3 - мезодерма; 4 - первичный кишечник; 5 - целомические карманы; 6 - нервная пластинка; 7- целом; 8 - вторичный кишечник; 9 - нервная трубка; 10 - хорда

Особое положение среди многоклеточных животных занимают губки (тип Porifera, или Spongia). Эта группа характеризуется очень примитивным общим уровнем организации: губки, по существу, не имеют эпителизованного фагоцитобласта, упорядоченного внутреннего строения, настоящего кишечника, нервной системы, рецепторов и т. д. Губки отличаются от всех остальных Metazoa чрезвычайно своеобразным онтогенезом, в ходе которого происходит инверсия зародышевых листков (экто- и энтодерма, так сказать, меняются местами). Новейшие данные молекулярных исследований показали, что губки имеют общее происхождение со всеми многоклеточными. Вероятно, они представляют собой очень раннюю боковую ветвь, обособившуюся на уровне фагопителлы. Древнейшие ископаемые остатки губок известны из вендских (эдиа- карских) отложений в Австралии.

  • См.: Иванов А.В. Происхождение многоклеточных. - Л., 1968.
  • Недавно появились первые данные об ископаемых остатках многоклеточных животных, найденных в Канаде и в Китае в породах, имеющих такой геологический возраст и отделенных от пород с остатками эдиакарских организмовслоями ледниковых отложений (тиллитов).
© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал