Отражения света. Конспект урока "Отражение света

24.02.2024

Большинство окружающих вас объектов: дома, деревья, ваши одноклассники и т. д. — не являются источниками света. Но вы их видите. Ответ на вопрос «Почему так?» вы найдете в этом параграфе.

Рис. 11.1. При отсутствии источника света невозможно ничего увидеть. Если есть источник света, мы видим не только сам источник, но и предметы, которые отражают свет, идущий от источника

Выясняем, почему мы видим тела, не являющиеся источниками света

Вы уже знаете, что в однородной прозрачной среде свет распространяется прямолинейно.

А что происходит, если на пути пучка света находится какое-то тело? Часть света может пройти сквозь тело, если оно прозрачное, часть поглотится, а часть обязательно отразится от тела. Некоторые отраженные лучи попадут нам в глаза, и мы увидим это тело (рис. 11.1).

Устанавливаем законы отражения света

Чтобы установить законы отражения света, воспользуемся специальным прибором — оптической шайбой*. В центре шайбы закрепим зеркало и направим на него узкий пучок света так, чтобы он давал на поверхности шайбы светлую полосу. Видим, что пучок света, отраженный от зеркала, тоже дает светлую полосу на поверхности шайбы (см. рис. 11.2).

Направление падающего пучка света зададим лучом СО (рис. 11.2). Этот луч называют падающим лучом. Направление отраженного пучка света зададим лучом OK. Этот луч называют отраженным, лучом.

Из точки O падения луча проведем перпендикуляр OB к поверхности зеркала. Обратим внимание на то, что падающий луч, отраженный луч и перпендикуляр лежат в одной плоскости, — в плоскости поверхности шайбы.

Угол α между падающим лучом и перпендикуляром, проведенным из точки падения, называют углом падения; угол β между отраженным лучом и данным перпендикуляром называют углом отражения.

Измерив углы α и β, можно убедиться, что они равны.

Если перемещать источник света по краю диска, угол падения светового пучка будет изменяться и соответственно будет изменяться угол отражения, причем каждый раз угол падения и угол отражения света будут равны (рис. 11.3). Итак, мы установили законы отражения света:

Рис. 11.3. С изменением угла падения света изменяется и угол отражения. Угол отражения всегда равен углу падения

Рис. 11.5. Демонстрация обратимости световых лучей: отраженный луч идет по пути падающего луча

рис. 11.6. Подходя к зеркалу, мы видим в нем своего «двойника». Конечно, никакого «двойника» там нет — мы видим в зеркале свое отражение

1. Луч падающий, луч отраженный и перпендикуляр к поверхности отражения, проведенный из точки падения луча, лежат в одной плоскости.

2. Угол отражения равен углу падения: β = α.

Законы отражения света установил древнегреческий ученый Евклид еще в III в. до н. э.

В каком направлении следует повернуть зеркало профессору, чтобы «солнечный зайчик» попал на мальчика (рис. 11.4)?

С помощью зеркала на оптической шайбе можно продемонстрировать также обратимость световых лучей: если падающий луч направить по пути отраженного, то отраженный луч пойдет по пути падающего (рис. 11.5).

Изучаем изображение в плоском зеркале

Рассмотрим, как создается изображение в плоском зеркале (рис. 11.6).

Пусть из точечного источника света S на поверхность плоского зеркала падает расходящийся пучок света. Из этого пучка выделим лучи SA, SB и SC. Используя законы отражения света, построим отраженные лучи ЛЛ Ъ BB 1 и CC 1 (рис. 11.7, а). Эти лучи пойдут расходящимся пучком. Если продлить их в противоположном направлении (за зеркало), все они пересекутся в одной точке — S 1 , расположенной за зеркалом.

Если часть отраженных от зеркала лучей попадет в ваш глаз, вам будет казаться, что отраженные лучи выходят из точки S 1 , хотя в действительности никакого источника света в точке S 1 нет. Поэтому точку S 1 называют мнимым изображением точки S. Плоское зеркало всегда дает мнимое изображение.

Выясним, как расположены предмет и его изображение относительно зеркала. Для этого обратимся к геометрии. Рассмотрим, например, луч SC, который падает на зеркало и отражается от него (рис. 11.7, б).

Из рисунка видим, что Δ SOC = Δ S 1 OC — прямоугольные треугольники, имеющие общую сторону CO и равные острые углы (так как по закону отражения света α = β). Из равенства треугольников имеем, что SO = S 1 O, то есть точка S и ее изображение S 1 симметричны относительно поверхности плоского зеркала.

То же можно сказать и об изображении протяженного предмета: предмет и его изображение симметричны относительно поверхности плоского зеркала.

Итак, нами установлены общие характеристики изображений в плоских зеркалах.

1. Плоское зеркало дает мнимое изображение предмета.

2. Изображение предмета в плоском зеркале и собственно предмет симметричны относительно поверхности зеркала, и это означает:

1) изображение предмета равно по размеру самому предмету;

2) изображение предмета расположено на том же расстоянии от поверхности зеркала, что и сам предмет;

3) отрезок, соединяющий точку на предмете и соответствующую ей точку на изображении, перпендикулярен поверхности зеркала.

Различаем зеркальное и рассеянное отражение света

Вечером, когда в комнате горит свет, мы можем видеть свое изображение в оконном стекле. Но изображение исчезает, если задернуть шторы: на ткани мы своего изображения не увидим. А почему? Ответ на этот вопрос связан по меньшей мере с двумя физическими явлениями.

Первое такое физическое явление — отражение света. Чтобы появилось изображение, свет должен отразиться от поверхности зеркально: после зеркального отражения света, идущего от точечного источника S, продолжения отраженных лучей пересекутся в одной точке S 1 , которая и будет изображением точки S (рис. 11.8, а). Такое отражение возможно только от очень гладких поверхностей. Их так и называют — зеркальные поверхности. Кроме обычного зеркала примерами зеркальных поверхностей являются стекло, полированная мебель, спокойная гладь воды и т. п. (рис. 11.8, б, в).

Если свет отражается от шероховатой поверхности, такое отражение называют рассеянным (диффузным) (рис. 11.9). В этом случае отраженные лучи распространяются в разных направлениях (именно поэтому мы видим освещенный предмет с любой стороны). Понятно, что поверхностей, рассеивающих свет, намного больше, чем зеркальных.

Посмотрите вокруг и назовите не менее десяти поверхностей, отражающих свет рассеянно.

Рис. 11.8. Зеркальное отражение света — это отражение света от гладкой поверхности

Рис. 11.9. Рассеянное (диффузное) отражение света — это отражение света от шероховатой поверхности

Второе физическое явление, влияющее на возможность видеть изображение, — это поглощение света. Ведь свет не только отражается от физических тел, но и поглощается ими. Лучшие отражатели света — зеркала: они могут отражать до 95 % падающего света. Хорошими отражателями света являются тела белого цвета, а вот черная поверхность поглощает практически весь свет, падающий на нее.

Когда осенью выпадает снег, ночи становятся намного светлее. Почему? Учимся решать задачи

Задача. На рис. 1 схематически изображены предмет ВС и зеркало NM. Найдите графически участок, из которого изображение предмета ВС видно полностью.

Анализ физической проблемы. Чтобы видеть изображение некоторой точки предмета в зеркале, необходимо, чтобы в глаз наблюдателя отразилась хотя бы часть лучей, падающих из этой точки на зеркало. Понятно, что если в глаз отразятся лучи, исходящие из крайних точек предмета, то в глаз отразятся и лучи, исходящие из всех точек предмета.

Решение, анализ результатов

1. Построим точку B 1 — изображение точки В в плоском зеркале (рис. 2, а). Область, ограниченная поверхностью зеркала и лучами, отраженными от крайних точек зеркала, и будет той областью, из которой видно изображение B 1 точки В в зеркале.

2. Аналогично построив изображение С 1 точки С, определим область ее видения в зеркале (рис. 2, б).

3. Видеть изображение всего предмета наблюдатель может только в том случае, если в его глаз попадают лучи, которые дают оба изображения — B 1 и С 1 (рис. 2, в). Значит, участок, выделенный на рис. 2, в оранжевым, и есть тот участок, из которого изображение предмета видно полностью.

Проанализируйте полученный результат, еще раз рассмотрите рис. 2 к задаче и предложите более простой способ найти область видения предмета в плоском зеркале. Проверьте свои предположения, построив область видения нескольких предметов двумя способами.

Подводим итоги

Все видимые тела отражают свет. При отражении света выполняются два закона отражения света: 1) луч падающий, луч отраженный и перпендикуляр к поверхности отражения, проведенный из точки падения луча, лежат в одной плоскости; 2) угол отражения равен углу падения.

Изображение предмета в плоском зеркале мнимое, равное по размеру самому предмету и расположено на том же расстоянии от зеркала, что и сам предмет.

Различают зеркальное и рассеянное отражения света. В случае зеркального отражения мы можем видеть мнимое изображение предмета в отражающей поверхности; в случае рассеянного отражения изображение не возникает.


Контрольные вопросы

1. Почему мы видим окружающие тела? 2. Какой угол называют углом падения? углом отражения? 3. Сформулируйте законы отражения света. 4. С помощью какого прибора можно удостовериться в справедливости законов отражения света? 5. В чем состоит свойство обратимости световых лучей? 6. В каком случае изображение называют мнимым? 7. Охарактеризуйте изображение предмета в плоском зеркале. 8. Чем рассеянное отражение света отличается от зеркального?

Упражнение № 11

1. Девочка стоит на расстоянии 1,5 м от плоского зеркала. На каком расстоянии от девочки находится ее отражение? Охарактеризуйте его.

2. Водитель автомобиля, глянув в зеркало заднего вида, увидел пассажира, сидящего на заднем сиденье. Может ли пассажир в этот момент, глядя в то же зеркало, увидеть водителя?

3. Перенесите рис. 1 в тетрадь, для каждого случая постройте падающий (или отраженный) луч. Обозначьте углы падения и отражения.

4. Угол между падающим и отраженным лучами равен 80°. Чему равен угол падения луча?

5. Предмет находился на расстоянии 30 см от плоского зеркала. Затем предмет переместили на 10 см от зеркала в направлении, перпендикулярном поверхности зеркала, и на 15 см — параллельно ей. Каким было расстояние между предметом и его отражением? Каким оно стало?

6. Вы движетесь к зеркальной витрине со скоростью 4 км/ч. С какой скоростью приближается к вам ваше отражение? На сколько сократится расстояние между вами и вашим отражением, когда вы пройдете 2 м?

7. Солнечный луч отражается от поверхности озера. Угол между падающим лучом и горизонтом в два раза больше, чем угол между падающим и отраженным лучами. Чему равен угол падения луча?

8. Девочка смотрит в зеркало, висящее на стене под небольшим углом (рис. 2).

1) Постройте отражение девочки в зеркале.

2) Найдите графически, какую часть своего тела видит девочка; область, из которой девочка видит себя полностью.

3) Какие изменения будут наблюдаться, если зеркало постепенно закрывать непрозрачным экраном?

9. Ночью в свете фар автомобиля лужа на асфальте кажется водителю темным пятном на более светлом фоне дороги. Почему?

10. На рис. 3 показан ход лучей в перископе — устройстве, действие которого основано на прямолинейном распространении света. Объясните, как работает это устройство. Воспользуйтесь дополнительными источниками информации и узнайте, где его применяют.


ЛАБОРАТОРНАЯ РАБОТА № 3

Тема. Исследование отражения света с помощью плоского зеркала.

Цель: экспериментально проверить законы отражения света.

оборудование: источник света (свеча или электрическая лампа на подставке), плоское зеркало, экран со щелью, несколько чистых белых листов бумаги, линейка, транспортир, карандаш.

указания к работе

подготовка к эксперименту

1. Перед выполнением работы вспомните: 1) требования безопасности при работе со стеклянными предметами; 2) законы отражения света.

2. Соберите экспериментальную установку (рис. 1). Для этого:

1) установите экран со щелью на белом листе бумаги;

2) перемещая источник света, получите на бумаге полоску света;

3) установите плоское зеркало под некоторым углом к полоске света и перпендикулярно листу бумаги так, чтобы отраженный пучок света тоже давал на бумаге хорошо заметную полоску.

Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац учебника).

1. Хорошо заточенным карандашом начертите на бумаге линию вдоль зеркала.

2. Поставьте на листе бумаги три точки: первую — посреди падающего пучка света, вторую — посреди отраженного пучка света, третью — в месте падения светового пучка на зеркало (рис. 2).

3. Повторите описанные действия еще несколько раз (на разных листах бумаги), устанавливая зеркало под разными углами к падающему пучку света.

4. Изменив угол между зеркалом и листом бумаги, убедитесь, что в этом случае вы не увидите отраженного пучка света.

Обработка результатов эксперимента

Для каждого опыта:

1) постройте луч, падающий на зеркало, и отраженный луч;

2) через точку падения луча проведите перпендикуляр к линии, проведенной вдоль зеркала;

3) обозначьте и измерьте угол падения (α) и угол отражения (β) света. Результаты измерений занесите в таблицу.

Анализ эксперимента и его результатов

Проанализируйте эксперимент и его результаты. Сделайте вывод, в котором укажите: 1) какое соотношение между углом падения светового луча и углом его отражения вы установили; 2) оказались ли результаты опытов абсолютно точными, а если нет, то в чем причины погрешности.

творческое задание

Используя рис. 3, продумайте и запишите план проведения эксперимента по определению высоты комнаты с помощью плоского зеркала; укажите необходимое оборудование.

По возможности проведите эксперимент.

Задание «со звездочкой»

Отражением света называютизменение направления световых лучей при падении на границу раздела двух сред, в результате чего свет распространяется обратно в первую среду.

Угол падения - угол между направлением падающего луча и перпендикуляром к границе раздела двух сред, восстановленным в точке падения .

Угол отражения - угол β между этим перпендикуляром и направлением отраженного луча.

Законы отражения света:

    Луч падающий, перпендикуляр к границе раздела двух сред в точке падения и луч отраженный лежат в одной плоскости.

    Угол отражения равен углу падения .

Преломлением света называют изменение направления световых лучей при переходе света из одной прозрачной среды в другую.

Угол преломления - угол между тем же перпендикуляром и направлением преломленного луча.

Скорость света в вакуумес = 3*10 8 м/с

Скорость света в среде V < c

Абсолютный показатель преломления среды показывает,во сколько раз скорость света v в дан­ной среде меньше, чем скорость света с в вакууме.

Абсолютный показатель преломления для вакуума равен 1

Скорость света в воздухе очень мало отличается от значения с, поэтому

Абсолютный показатель преломления для воздуха будем считать равным 1

Относительный показатель преломления показы­вает, во сколько раз изменяется скорость света при переходе луча из первой среды во вторую.

Законы преломления света:

    Луч падающий, перпендикуляр к границе раздела двух сред в точке падения и преломленный луч лежат в одной плоскости.

    Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной пары сред:

где V 1 и V 2 – скорости распространения света в первой и второй среде.

Сучетом показателя преломления закон преломления света можно записать в виде

где n 21 относительный показатель преломления второй среды относительно первой;

n 2 и n 1 абсолютные показатели преломления второй и первой среды соответственно

Полное внутреннее отражение

Если световые лучи из оптически более плот­ной среды 1 падают на границу раздела с оптиче­ски менее плотной сре­дой 2 (n 1 n 2 ),то угол паде­ния меньше угла преломления . При увели­чении угла падения можно подойти к такому его значению пр , когда преломленный луч заскользит по границе раздела двух сред и не попадет во вторую среду,

Угол преломления  , при этомвся световая энергия отражается от границы раздела.

Предельным углом полного внутреннего отражения пр называется угол, при котором преломленный луч скользит вдоль поверхности двух сред,

При переходе из среды опти­чески менее плотной в среду бо­лее плотную полное внутреннее отражение невозможно.

43 Интерференция света. Дифракция света. Дифракционная решетка.

Интерференция света

Интерференцией волн называетсяявление увеличения или уменьшения амплитуды результирующей волны при сложении волн с одинаковой частотой колебаний и постоянной во времени разностью фаз.

В точках, где амплитуда колебаний увеличивается, наблюдается интерференционный максимум

В точках, где амплитуда колебаний

уменьшается, наблюдается

интерференционный минимум

Волны и возбуждающие их источники называются когерентными , еслиразность фаз волн не зависит от времени, и волны имеют одинаковую длину волны. Результат наложения когерентных световых волн, наблюдаемый на экране, фотопластинке и т.д., называется интерференционной картинкой. Устойчивую интерференционную картину дают только когерентные волны.

Волны от естественных источников не бывают когерентными, поэтому для наблюдения интерференции света искусственно создают разность хода световых волн, разделяя свет

от одного источника на два пучка, которые проходят разные пути r 1 и r 2 , а затем эти пучки сводятся вместе на экране.

 - длина волны,

r = r 2 r 1 геометрическая разность хода двух

волн

Δφ – разность фаз волн

Δφ=2π r /

Геометрической разностью хода называется разница расстояний, пройденных волнами от разных источников до точки, где наблюдается их интерференция

Условие интерференционных максимумов (усиление света)

Для разности фаз

Δφ= 2π k - разность фаз кратна 2π

для разности хода

r = k или

r = 2 k k -любое целое число ( k =0,1,2,3, …),

Разность хода равна четному числу полуволн

Условие интерференционных минимумов (ослабление света):

Для разности фаз

Δφ= π(2 k +1)

для разности хода

r = (2 k + 1) ,

где k – целое число ( k =0,1,2,3, …),

Разность хода равна нечетному числу полуволн

Дифракцией света называется отклонение направления распространения волн от прямолинейного у границы преграды.

Наиболее наглядно дифракция света проявляется при прохождении света через отверстия с размерами порядка длины волн оптического диапазона. Явление дифракции легко наблюдать на дифракционной решетке.

Простейшей дифракционной решеткой является система из N одинаковых параллельных щелей в плоском непрозрачном экране ширины b каждая, расположенных на равных непрозрачных промежутках a друг от друга. Величина d = b + a называется постоянной (периодом) дифракционной решетки.

Прохождение монохроматического излучения через дифракционную решетку

Монохроматическим называется излучение, состав которого определяется одной длиной волны. Например, волна с длиной волны λ = 770 нм – монохроматический красный свет.

φ- угол дифракции

Лучи, прошедшие дифракционную решетку, когерентны, поэтому дают на экране интерференционную картину.

Для двух лучей, испытывающих дифракцию на краях двух соседних щелей, геометрическая разность хода r = dsin

Положение главных максимумов освещенности в дифракционной картинке, получаемой при нормальном падении световой волны на поверхность решетки, определяется соотношением:

d sin = k

где d sin -разность хода лучей световых волн от соседних щелей; -угол дифракции, т.е. угол между направлением хода падающей на решетку световой волны и направлением хода волны на выходе ее из щели; k – порядок максимума (k = 0,1,2,3,…).

Положения главных минимумов определяется соотношением

d sin = (2k + 1) ,

k – порядок минимума (k = 0,1,2,3,…).

Введем несколько определений. Углом падения луча назовем угол между падающим лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол a). Углом отражения луча назовем угол между отраженным лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол b).

При отражении света всегда выполняются две закономерности: Первая. Луч падающий, луч отраженный и перпендикуляр к отражающей поверхности в точке излома луча всегда лежат в одной плоскости. Вторая. Угол падения равен углу отражения. Эти два утверждения выражают суть закона отражения света.

На левом рисунке лучи и перпендикуляр к зеркалу не лежат в одной плоскости. На правом рисунке угол отражения не равен углу падения. Поэтому такое отражение лучей нельзя получить на опыте.

Закон отражения является справедливым как для случая зеркального, так и для случая рассеянного отражения света. Обратимся еще раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, все они расположены так, что углы отражения равны углам падения. Взгляните, шероховатую поверхность правого чертежа мы «разрезали» на отдельные элементы и провели перпендикуляры в точках излома лучей.

Некоторые законы физики трудно представить без использования наглядных пособий. Это не касается привычного всем света, попадающего на различные объекты. Так на границе, разделяющей две среды, происходит смена направления световых лучей в том случае, если эта граница намного превышает При света возникает, когда часть его энергии возвращается в первую среду. Если часть лучей проникает в другую среду, то происходит их преломление. В физике энергии, попадающий на границу двух различных сред, называется падающим, а тот, что от нее возвращается в первую среду, - отраженным. Именно взаимное расположение данных лучей определяет законы отражения и преломления света.

Термины

Угол между падающим лучом и перпендикулярной линией к границе раздела двух сред, восстановленной к точке падения потока световой энергии, называется Существует еще один важный показатель. Это угол отражения. Он возникает между отраженным лучом и перпендикулярной линией, восстановленной к точке его падения. Свет может распространяться прямолинейно исключительно в однородной среде. Разные среды по-разному поглощают и отражают излучение света. Коэффициентом отражения называют величину, характеризующую отражательную способность вещества. Он показывает, сколько принесенной световым излучением на поверхность среды энергии составит та, которая унесется от нее отраженным излучением. Данный коэффициент зависит от целого множества факторов, одними из самых важных являются угол падения и состав излучения. Полное отражение света происходит тогда, когда он падает на предметы или вещества с отражающей поверхностью. Так, например, это случается при попадании лучей на тонкую пленку серебра и жидкой ртути, нанесенных на стекло. Полное отражение света на практике встречается довольно часто.

Законы

Законы отражения и преломления света были сформулированы Евклидом еще в ІІІ в. до н. э. Все они были установлены экспериментально и легко подтверждаются чисто геометрическим принципом Гюйгенса. Согласно ему любая точка среды, до которой доходит возмущение, представляет собой источник вторичных волн.

Первый света: падающий и отражающий луч, а также перпендикулярная линия к границе раздела сред, восстановленная в точке падения светового луча, расположены в одной плоскости. На отражательную поверхность падает плоская волна, волновые поверхности которой являются полосками.

Другой закон гласит о том, что угол отражения света равен углу падения. Это происходит потому, что они имеют взаимно перпендикулярные стороны. Исходя из принципов равенства треугольников, следует, что угол падения равен углу отражения. Можно легко доказать, что они лежат в одной плоскости с перпендикулярной линией, восстановленной к границе раздела сред в точке падения луча. Эти важнейшие законы справедливы и для обратного хода света. Вследствие обратимости энергии луч, распространяющийся по пути отраженного, будет отражаться по пути падающего.

Свойства отражающих тел

Подавляющее большинство объектов только отражают падающее на них световое излучение. При этом они не являются источником света. Хорошо освещенные тела отлично видны с любых сторон, поскольку излучение от их поверхности отражается и рассеивается в разных направлениях. Это явление называются диффузным (рассеянным) отражением. Оно происходит при попадании света на любые шероховатые поверхности. Для определения пути отраженного от тела луча в точке его падения проводится плоскость, касающаяся поверхности. Затем по отношению к ней строят углы падения лучей и отражения.

Диффузное отражение

Только благодаря существованию рассеянного (диффузного) отражения световой энергии мы различаем предметы, не способные испускать свет. Любое тело будет абсолютно невидимым для нас, если рассеивание лучей будет равно нулю.

Диффузное отражение световой энергии не вызывает у человека неприятных ощущений в глазах. Это происходит от того, что не весь свет возвращается в первоначальную среду. Так от снега отражается около 85% излучения, от белой бумаги - 75%, ну а от велюра черного цвета - всего 0,5%. При отражении света от различных шероховатых поверхностей лучи направляются хаотично по отношению друг к другу. В зависимости от того, в какой степени поверхности отражают световые лучи, их называют матовыми или зеркальными. Но все-таки эти понятия являются относительными. Одни и те же поверхности могут быть зеркальными и матовыми при различной длине волны падающего света. Поверхность, которая равномерно рассеивает лучи в разные стороны, считается абсолютно матовой. Хотя в природе таких объектов практически нет, к ним очень близки неглазурованный фарфор, снег, чертежная бумага.

Зеркальное отражение

Зеркальное отражение лучей света отличается от других видов тем, что при падении пучков энергии на гладкую поверхность под определенным углом они отражаются в одном направлении. Это явление знакомо всем, кто когда-то пользовался зеркалом под лучами света. В этом случае оно является отражающей поверхностью. К этому разряду относятся и другие тела. К зеркальным (отражающим) поверхностям можно отнести все оптически гладкие объекты, если размеры неоднородностей и неровностей на них составляют меньше 1 мкм (не превышают величину длины волны света). Для всех таких поверхностей действительны законы отражения света.

Отражение света от разных зеркальных поверхностей

В технике нередко используются зеркала с изогнутой отражающей поверхностью (сферические зеркала). Такие объекты представляют собой тела, имеющие форму сферического сегмента. Параллельность лучей в случае отражения света от таких поверхностей сильно нарушается. При этом существует два вида таких зеркал:

Вогнутые - отражают свет от внутренней поверхности сегмента сферы, их называют собирающими, поскольку параллельные лучи света после отражения от них собираются в одной точке;

Выпуклые - отражают свет от наружной поверхности, при этом параллельные лучи рассеиваются в стороны, именно поэтому выпуклые зеркала называют рассеивающими.

Варианты отражения световых лучей

Луч, падающий практически параллельно поверхности, только немного касается ее, а далее отражается под сильно тупым углом. Затем он продолжает путь по очень низкой траектории, максимально расположенной к поверхности. Луч, падающий практически отвесно, отражается под острым углом. При этом направление уже отраженного луча будет близко к пути падающего луча, что полностью соответствует физическим законам.

Преломление света

Отражение тесно связано с иными явлениями геометрической оптики, такими как преломление и полное внутреннее отражение. Зачастую свет проходит через границу между двумя средами. Преломлением света называют изменение направления оптического излучения. Оно происходит при прохождении его из одной среды в другую. Преломление света имеет две закономерности:

Луч, прошедший через границу между средами, расположен в плоскости, которая проходит через перпендикуляр к поверхности и падающий луч;

Угол падения и преломления связаны.

Преломление всегда сопровождается отражением света. Сумма энергий отраженного и преломленного пучков лучей равна энергии падающего луча. Их относительная интенсивность зависит от в падающем пучке и угла падения. На законах преломления света основывается устройство многих оптических приборов.

© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал